2.Организация списков и их обработка.

2.3.Поиск и выбор в линейных списках.

Последовательный поиск

Задача поиска. Пусть заданы линейные списки: список элементов В= и список ключей V= (в простейшем случае это целые числа). Требуется для каждого значения Vi из V найти множество всех совпадающих с ним элементов из В. Чаще всего встречается ситуация когда V содержит один элемент, а в В имеется не более одного такого элемента.

Эффективность некоторого алгоритма поиска А оценивается максимальным Max{А} и средним Avg{А} количествами сравнений, необходимых для нахождения элемента V в В. Если Pi - относительная частота использования элемента Кi в В, а Si - количество сравнений, необходимое для его поиска, то

 
                                                 n
       Max{А} = max{ Si, i=1,n }  ;    Avg{А} =    Pi Si .
                                                i=1
 

Последовательный поиск предусматривает последовательный просмотр всех элементов списка В в порядке их расположения, пока не найдется элемент равный V. Если достоверно неизвестно, что такой элемент имеется в списке, то необходимо следить за тем, чтобы поиск не вышел за пределы списка, что достигается использованием стоппера.

Очевидно, что Max последовательного поиска равен N. Если частота использования каждого элемента списка одинакова, т.е. P=1/N, то Avg последовательного поиска равно N/2. При различной частоте использования элементов Avg можно улучшить, если поместить часто встречаемые элементы в начало списка.

Пусть во входном потоке задано 100 целых чисел К1,К2,... К100 и ключ V. Составим программу для последовательного хранения элементов Кi и поиска среди них элемента, равного V, причем такого элемента может и не быть в списке. Без использования стоппера программа может быть реализована следующим образом:

 
       /*    последовательный поиск без стоппера    */
       #include 
       main()
       {
       int k[100],v,i;
       for (i=0;i

С использованием стоппера программу можно записать в виде:

 
       /*  последовательный поиск со стоппером    */
       #include 
       main()
       {
       int k[101],v,i;
       for (i=0;i

 Бинарный поиск

Для упорядоченных линейных списков существуют более эффективные алгоритмы поиска, хотя и для таких списков применим последовательный поиск. Бинарный поиск состоит в том, что ключ V сравнивается со средним элементом списка. Если эти значения окажутся равными, то искомый элемент найден, в противном случае поиск продолжается в одной из половин списка.

Нахождение элемента бинарным поиском осуществляется очень быстро. Max бинарного поиска равен log2(N), и при одинаковой частоте использования каждого элемента Avg бинарного поиска равен log2(N). Недостаток бинарного поиска заключается в необходимости последовательного хранения списка, что усложняет операции добавления и исключения элементов .

Пусть, например, во входном потоке задано 101 число, К1,К2,...,К100, V - элементы списка и ключ. Известно, что список упорядочен по возрастанию, и элемент V в списке имеется. Составим программу для ввода данных и осуществления бинарного поиска ключа V в списке К1,К2,...,К100.

 
     /*    Бинарный поиск      */
     #include 
     main()
     {
     int k[100],v,i,j,m;
     for (i=0;i

М-блочный поиск

Этот способ удобен при индексном хранении списка. Предполагается, что исходный упорядоченный список B длины N разбит на M подсписков B1,B2,...,Bm длины N1,N2,...,Nm, таким образом, что B=B1,B2,..,Bm.

Для нахождения ключа V, нужно сначала определить первый из списков Bi, i=1,M, последний элемент которого больше V, а потом применить последовательный поиск к списку Bi.

Хранение списков Bi может быть связным или последовательным. Если длины всех подсписков приблизительно равны и M= N, то Max М-блочного поиска равен 2 N. При одинаковой частоте использования элементов Avg М-блочного поиска равен N.

Описанный алгоритм усложняется, если не известно, действительно ли в списке имеется элемент, совпадающий с ключом V. При этом возможны случаи: либо такого элемента в списке нет, либо их несколько.

Если вместо ключа V имеется упорядоченный список ключей, то последовательный или М-блочный поиск может оказаться более удобным, чем бинарный, поскольку не требуется повторной инициализации для каждого нового ключа из списка V.

Методы вычисления адреса

Методы вычисления адреса. Пусть в каждом из М элементов массива Т содержится элемент списка (например целое положительное число). Если имеется некоторая функция H(V), вычисляющая однозначно по элементу V его адрес - целое положительное число из интервала [0,M-1],то V можно хранить в массиве T с номером H(V) т.е. V=T(H(V)). При таком хранении поиск любого элемента происходит за постоянное время не зависящее от M.

Массив T называется массивом хеширования, а функция H - функцией хеширования.

При конкретном применении хеширования обычно имеется определенная область возможных значений элементов списка V и некоторая информация о них. На основе этого выбирается размер массива хеширования M и строится функция хеширования. Критерием для выбора M и H является возможность их эффективного использования.

Пусть нужно хранить линейный список из элементов K1,K2,..,Kn, таких, что при Ki=Kj, mod(Ki,26)= mod(Kj,26). Для хранения списка выберем массив хеширования T(26) с пространством адресов 0-25 и функцию хеширования H(V)= mod(V,26). Массив T заполняется элементами T(H(Ki))=Ki и T(j)=0 если j (H(K1), H(K2),..,H(Kn)).

Поиск элемента V в массиве T с присваиванием Z его индекса если V содержится в T, или -1, если V не содержится в T, осуществляется следующим образом

 
        int t[26],v,z,i;
        i=(int)fmod((double)v,26.0);
        if(t[i]==v) z=i;
        else z=-1;
 

Добавление нового элемента V в список с возвращением в Z индекса элемента, где он будет храниться, реализуется фрагментом

 
        z=(int)fmod((doule)v,26.0);
        t[z]=v;
 

а исключение элемента V из списка присваиванием

 
        t[(int)fmod((double)v,26)]=0;
 

Теперь рассмотрим более сложный случай, когда условие Ki=Kj H(Ki)=H(Kj) не выполняется. Пусть V - множество возможных элементов списка (целые положительные числа), в котором максимальное число элементов равно 6. Возьмем M=8 и в качестве функции хеширования выберем функцию H(V)=Mod(V,8).

Предположим, что B=, причем H(K1)=5, H(K2)=3, H(K3)=6, H(K4)=3, H(K5)=1, т.е. H(K2)=H(K4) хотя K2=K4. Такая ситуация называется коллизией, и в этом случае при заполнении массива хеширования требуется метод для ее разрешения. Обычно выбирается первая свободная ячейка за собственным адресом. Для нашего случая массив T[8] может иметь вид

 
         T= .
 

При наличии коллизий усложняются все алгоритмы работы с массивом хеширования. Рассмотрим работу с массивом T[100], т.е. с пространством адресов от 0 до 99. Пусть количество элементов N не более 99, тогда в T всегда будет хотя бы один свободный элемент равный нулю. Для объявления массива используем оператор

 
            int static t[100];
 

Добавление в массив T нового элемента Z с занесением его адреса в I и числа элементов в N выполняется так:

 
        i=h(z);
        while (t[i]!=0 && t[i]!=z)
        if (i==99) i=0;
        else i++;
        if (t[i]!=z)  t[i]=z,  n++;
 

Поиск в массиве T элемента Z с присвоением I индекса Z, если Z имеется в T, или I=-1, если такого элемента нет, реализуется следующим образом:

 
        i=h(z);
        while (t[i]!=0 && t[i]!=z)
        if (i==99) i=0;
        else i++;
        if (t[i]==0) i=-1;
 

При наличии коллизий исключение элемента из списка путем пометки его как пустого, т.е. t[i]=0, может привести к ошибке. Например, если из списка B исключить элемент K2, то получим массив хеширования в виде T=, в котором невозможно найти элемент K4, поскольку H(K4)=3, а T(3)=0. В таких случаях при исключении элемента из списка можно записывать в массив хеширования некоторое значение непринадлежащее области значений элементов списка и не равное нулю. При работе с таким массивом это значение будет указывать на то, что нужно просматривать со средние ячейки.

Достоинство методов вычисления адреса состоит в том, что они самые быстрые, а недостаток в том, что порядок элементов в массиве T не совпадает с их порядком в списке, кроме того довольно сложно осуществить динамическое расширение массива T.